世间万物皆能带来灵感,无论是自然界的生物,还是生活中的一个小物件。日前,美国北卡罗来纳州立大学的研究人员开发出了一种软体机器人,以按扣发卡为灵感的双稳态翅膀附着在柔软的硅胶身体上,通过将空气注入软体内部的腔室来控制翅膀在两种稳定状态间切换。当这些腔室充气和放气时,身体会上下弯曲,推动翅膀来回摆动。
由于它的游泳动作类似于人类蝶泳时手臂的动作,该机器人也被称为“蝴蝶机器人”。实测中,蝴蝶机器人能够达到每秒3.74个体长的速度,比之前的游泳机器人快4倍以上。
我们的科技留言板“有意见”如下
@不倒翁:为了实现飞行梦想,早期人类无数次尝试直接模仿鸟类飞行,比如达芬奇就对鸟类进行了细微之至的观察和研究,包括鸟类翅膀的形状、飞行的姿态、飞行的动力等,试图设计人造翅膀来飞行。但是直到知识进化到人类了解了飞行的本质是空气动力学之后,真正的飞行器才得以实现。现如今,仿生机械又开始热起来,让机器模拟生物是一种研究捷径,但是这种捷径的功效如何,还是需要时间的检验。
@周一见:蝴蝶机器人的外形也酷似蝠鲼,通过驱动单元来控制两个翅膀,可急速直行,也可操纵进行急转弯,不过这也是目前原型机器人的局限所在,等后续一个无拴、自动的版本。
@黑咕隆咚:游泳机器人越来越发达了,听说可以替代人类救生员救助落水者,还能应用于研究领域、也可以潜入水中代替人类完成一些操作,去地下海洋寻找地球以外生命的希望之地。水下环境恶劣危险,人的潜水深度有限,游泳机器人也是个不错的选择。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。