最近,来自KAUST和哈佛大学的研究人员提出了MiniGPT4-Video——专为视频理解而设计的多模态大模型。背后技术是通过将视觉特征转化为LLM空间,从而实现了对单幅图像的理解,然后使模型通过输入多帧训练来理解视频。
MiniGPT4-Video能够同时处理时态视觉数据和文本数据,因此善于理解视频的复杂性。比如上传一个某个品牌的宣传视频,MiniGPT4-Video能够为其配出标题以及宣传语;看过一簇簇花盛开的视频,MiniGPT4-video还可以即兴作出抒情诗。
“有意见”留言板
@剪辑尸:演示效果很棒,实际体验翻车的产品太多了,尤其是直接生成视频的方式,目前还是挺容易失败的,MiniGPT4-Video看起来实用性一般,但是AI终于能看懂视频的做法了,也许以后能有助于提高视频生成的成功率吧。
@PD:这种模型的能力在于它不仅可以识别视频中的视觉元素,还能理解视频中的语境和情感,这对于自动内容生成、视频摘要、广告创意和许多其他应用来说是非常有价值的。
好文章,需要你的鼓励
随着各行各业数字化变革的不断深入,人类社会正加速迈向智能化。作为智能世界和数字经济的坚实底座,数据中心也迎来了蓬勃发展。面
“未来软件定义汽车”的设想也成为马丁当前运营路线的指导方针,且高度关注数据、零件和资产管理等议题。