据说,名为 Groq 的初创公司带着史上最快的大模型和自研芯片LPU来了。经过网友测试,Groq每秒生成速度接近500 tok/s,碾压GPT-4的40 tok/s。
根据Groq官网的介绍,LPU是一种专为AI推理所设计的芯片。但要训练大模型,仍然需要购买GPU。如果把训练必做养兵千日,那么推理就是用兵一时,两者缺一不可。Groq LPU的快速输出,还是离不开背后GPU的数据训练。 因此结合训练和推理的总成本来看。如人工智能专家贾扬清分析称,Groq综合成本相当于英伟达GPU的30多倍。
“有意见”留言板
@卡卡卡卡西:面对大模型,船大不好掉头的反而是芯片厂商,大家都知道大模型更需要的是访存密集型芯片,但现在的芯片厂商都是基于自己干了那么多年的芯片架构进行优化,没勇气从头再来,所以OpenAI奥特曼才想自研芯片,这也才有了Groq的震撼登场。
@贰言:Groq的自研LPU比英伟达的GPU性能更强,这对英伟达等传统AI芯片制造商来说是个巨大的挑战。在AI技术日益普及的当下,传统制造商必须考虑如何更高效地整合AI技术,以增强自身产品和服务的竞争力
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。