一直以来人们都有一个梦想,即借助人工智能AI技术来拓展现有人类智慧、知识和创造力的边界,但人脑复杂结构带来的学习能力远超人类构建AI的能力,于是AI只能通过各种特定深度学习模型来单点突破某些特定领域。而AIGC,即基于AI能力的内容创作(包括文字、图片和视频等等)也是其中一个重要类别。
然而AI的“深度学习”训练并不是拥有自我意识的自主学习,是通过收集大量样本让AI从海量数据中总结规律,再根据人类的指令,基于规律进行内容再生产的过程,它同时受核心算法、硬件条件、数据库样本等多方面的限制。但是在今年年初,AIGC的缺点被最终被 diffusion 扩散化模型克服,带来了魔术般的用户体验:打开网址,输入你想要画面的关键字,等待几分钟,模型就会生成完成度非常高的图片作品。普通人使用最尖端AI技术的门槛因此被降到最低,上线以来,仅通过官方平台 DreamStudio 制作的生成图片就超过1.7万亿张。
我们的科技留言板“有意见”如下:
@随机即灵感:AI作画的在技术的帮助下让人类不断提升对不确定性的认知。8年前,通过“生成式对抗网络”(GAN, Generative Adversarial Networks)的AI画作只不过是通过自鉴别进行不断地逼近模仿。今天的稳定扩散模型(Stable Diffusion Model)通过引入不可观测的随机变量,让画作更”自然“,也体现出了不确定性的魅力所在。
@bicmao:并不认同“AI取代人类”这句话。Diffusion大火之前,AI绘图其实比较一般,大部分AI绘图基本只能生成特定类型的图片,Diffusion确实使得AI绘图有了质量上的飞跃,而且可以很好地根据语言指导生成,但是可控性依然不足,功能指向性也较单一。目前,AI绘图尚不成熟。比如“五彩斑斓的黑”这种需求,对于怼也怼不了,做也做不出的AI来说,就只能化身“Siri”了。
@素颜也倾城:“关键词、数据库、模糊查找、潜在扩散模型”=“素材库融合怪”,Stability AI是否可以“唤醒人类的潜能”我不清楚,但是目前AI还没有独立的思考及创造能力,摆在我们眼前的还是如何防范AI创作模型的“剽窃”。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。