英伟达2022秋季GTC上,黄仁勋发布人类有史以来最强自动驾驶芯片DRIVE Thor。和雷神Thor同名的智能驾驶芯片可以提供出高达2000TOPS的强大算力。
2000TOPS的算力意味着什么?从业内普遍认知行和已经展现出的规律来看,一般L2级辅助驾驶,需求的算力在几十TOPS左右。智能驾驶每提升一个级别,需求算力也呈指数上涨。例如,目前行业普遍站在L2迈向L3的门槛,需求的算力在几百TOPS左右。而为未来几年算法迭代发展留足升级空间的产品,一般都把算力堆到1000TOPS以上。
也就是说,自动驾驶研发的节奏,是按照2025年L3迈向L4,车端算力刚好在1000T左右的预想规划。最重要的,是客观加速自动驾驶能力的迭代周期。毕竟,这是史上第一次出现“算力等算法”的情况。其次,DRIVE Thor上车,会更加彻底的改变汽车底层架构,在智能化的核心价值上走得更远更极致。当然也会加速传统汽车淘汰出局。
我们的科技留言板“有意见”如下
隔壁二大爷:“数学奇才”黄教主,使用“雷神”芯片,搅动了整个汽车自动驾驶行业,“一芯六用”降低了工业上综合布线的难度同时也降低了生产成本,但是对我这种“平民用户”来说,如何得到驾驶安全、信息安全才是我最关注的。
@脱虚换道:GPU算力正从虚拟经济转向实体经济。全球虚拟货币与主权货币的矛盾凸显后,挖矿带动的GPU算力需求戛然而止, NVIDIA股价暴跌打击的不仅是投资者的信心,还严重打击了黄仁勋的GPU帝国的生存力。黄仁勋亟需找到一个新的业务增长点,放眼全球,“元宇宙”初试锋芒,但尚未形成气候,造车新势力引领的智能驾驶带动了汽车代际更替业务却不断增长,毕竟选对赛道才能平安过冬。
@媒体搬运工:稳固已有优势市场的同时,NVIDIA也在拓展新领域。从新一代Ada Lovelace RTX GPU到H100 GPU全面投产,NVIDIA GPU正在“脱胎换骨”。在边缘自主机器、自动驾驶等领域,NVIDIA也带来了激动人心的产品,想象的空间是巨大的。
好文章,需要你的鼓励
阿布扎比科技创新研究院团队首次发现大语言模型生成的JavaScript代码具有独特"指纹"特征,开发出能够准确识别代码AI来源的系统。研究创建了包含25万代码样本的大规模数据集,涵盖20个不同AI模型,识别准确率在5类任务中达到95.8%,即使代码经过混淆处理仍保持85%以上准确率,为网络安全、教育评估和软件取证提供重要技术支持。
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
斯坦福大学研究团队首次系统比较了人类与AI在文本理解任务中的表现。通过HUME评估框架测试16个任务发现:人类平均77.6%,最佳AI为80.1%,排名第4。人类在非英语文化理解任务中显著优于AI,而AI在信息处理任务中更出色。研究揭示了当前AI评估体系的缺陷,指出AI的高分往往出现在任务标准模糊的情况下。