近日,DeepMind推出了单一“通才”代理(Generalist Agent)Gato。该AI系统能够执行600多种不同的任务,可使用相同的权重来完成注释图像、聊天、玩小游戏、关节力矩控制、用机械臂堆叠积木等众多任务。据了解,这是第一个在如此多不同任务上都表现较好的AI模型。DeepMind称Gato为一种“多模式、多任务、多实施例的通才系统”,构建方法与GPT-3等大规模语言模型类似,但参数数量要小几个数量级,相比1750亿参数的GPT-3,Gato只有约12亿个参数。
我们的科技留言板及Twitter用户对此事“有意见”如下
@崔妮蒂:通用AI是DeepMind“有生之年”的目标。不过Gato的多任务,还是数量多,不是类别多,而人能学的类别是无限的,能左手写公式,右手刷盘子。但DeepMind毕竟是商业公司,却怀揣人类命运级的理想,值得赞。(题外话:谷歌早年搞计算机视觉是认猫,而Gato是西班牙语的猫,难道AI的尽头是铲屎官?)
@汤姆猫:很容易将Gato与通用人工智能AGI混淆。就像一个预存了600种不同游戏的游戏机,与一个拥有600种不同玩法的游戏,同样能玩600次,但本质是有区别的。
@Manish Patel:一个根本性问题,仍然是大量的数据构成了Gato的“源头”,它不学习新知识。
@媒体搬运工/@码客人生:AI模型走通用路线是死路一条,什么都可以的“通才”往往什么都做不太好,Gato其实也不例外,领域驱动的AI模型(domin-driven AI Modle)才是未来。
@不倒翁:可解释、可通用的AI技术是趋势,目的是可信任、可溯源,作用是约束,通过算法透明来约束机器人。想一想当机器人比人聪明,而且不受约束是多么的可怕。
@素颜也倾城:2019年,DeepMind推出的游戏AIphaStar,当时结构非常复杂,到了2022年,一个可以完成数百个任务的AI,它的架构仅仅是Transformer这个多面手。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。