国产大模型零一万物API正式开放,提供了以下三个模型,开发者可以直接调用:
Yi-34B-Chat-0205:基于开源版进行深度优化的版本,指令遵循能力提升近 30%,模型回复延迟大大降低。适用于聊天、问答、对话、协作、翻译等场景。
Yi-34B-Chat-200K:200K 超长上下文,支持处理约 20w ~ 30w 个中文汉字(≈ 1 本《三体》))或英文单词。适用于多篇文档内容理解、海量数据分析挖掘和跨领域知识融合应用等场景。
Yi-VL-Plus: 支持1024*1024高分辨率图片输入,具备图片问答、图表理解、OCR、视觉推理能力。适用于对复杂图表、截图的内容分析,包括信息识别、提取、理解、推理等。
“有意见”留言板
@回归:按照这个测试的结果,有放弃GPT-4转 Yi大模型的冲动。很想马上就体验一下,希望价格能够更加亲民,让大模型真正成为企业的生产工具,员工的好助手。
@无聊的内卷:感觉现在AI发展的关键是对应用的开发。直接点说:就是真正在消费端、在企业端需要有能盈利的应用。现在大家都在通用大模型这块卷参数,卷排行榜,动不动就超越GPT,其实无非就是多几块GPU,多几条算法优化,说实话有点舍本逐末。
@云木:现在各家都在强调长文本能力,零一万物也将此作为API平台的重点。此外AI软件时代会引发从底层到应用层的变革,纯移动应用将成为过去式,未来AI原生应用会越来越重要。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。