据爆料:用户量高达150万的AI编程工具GitHub Copilot,平均每月每用户倒贴20美元,最高能达80美元。OpenAI运行ChatGPT,每日投入成本可能高达70万美元。虽然随着能源等成本的下降,未来大模型计算成本也会随之下降,但目前这一运行成本,依旧无法被会员价所填补。与此相对的是AI绘画,Midjourney用户数一路飙升到近1500万,已成功实现2亿美元的年收入。
“有意见”留言板
@出来混总是要还:如果AI不挣钱英伟达也不会是赢家,最终怎么挣的还会怎么吐出来。故意构建虚假繁荣借机抬高显卡价格,投资由“矿工”转型的算力服务公司,依靠金融戏法赚钱也是黄教主的拿手好戏。技术这个工具用在创造生产力价值上才是挣钱的正道。
@Betty:大型语言模型和AI绘画产品在商业化上面临多重挑战。语言模型如GitHub Copilot亏损严重,主要原因在于高昂的运营成本和宣传费用。用户尚未充分认识到生成式AI的实际价值,这导致了宣传的困难。相比之下,AI绘画产品似乎更容易实现盈利,因为它们的商业模式更明确,允许用户将作品用于商业用途。但它们也面临计算成本上升的挑战。总之,这两种技术都有潜力,但需要克服成本和市场推广等问题,以实现商业成功。
@nv:全球科技巨头在大模型上的投入虽然巨大,但目前看来并未带来预期的盈利。主要问题在于高昂的运行成本和版权成本,以及大模型自身的落地场景和应用价值仍待挖掘。然而,AI绘画产品却已经开始盈利,其成功的关键在于产品价值点明确,用户可以立即将作品用于商业使用。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。