人类在预测天气这件事上已持续了千百年,古时便有夜观天象,而今随着科技发展,人工智能和机器学习领域取得突破,AI也越来越多地参与到天气预报行业中。
最近,DeepMind和谷歌新研究出了一种基于机器学习的天气模拟器,可以在60秒内预测10天内的天气。DeepMind以「编码-处理-解码」的方式使用图神经网络(GNN)创建的自回归模型GraphCast,在10天的预报中,在6小时步长和0.25°经纬度分辨率下,超过了目前最精确的确定性系统——ECMWF的HRES,并且GraphCast只需要一台Cloud TPU v4设备即可预测。
我们的科技留言板“有意见”如下
@不倒翁:中国古人说,“差若毫厘,谬以千里。”在科学领域,称之为“蝴蝶效应”。高性能计算结合AI的价值是分析大量的数据,但并不是分析更准确的数据,有些领域的就不适合数据越大,分析越准确,天气预测就是之一,因为计算机对于最初的数据非常敏感,前期一个微小的变化将对后面产生不可估量的影响。所以我们洞见大自然,只能在大自然的范围内!除非AI在更高维度观察大自然,不然不可能预测准确。
@黑咕隆咚:虽然AI预测天气用时短且准确率高,但是它也不会完全取代人类,预测结果还是得依靠有经验的人员进行核验,然后再传达给公众,以确保其可靠性,而且AI擅长预测它所接受训练的数据中常见的模式,如果遇到异常极端天气,它还能否预测呢?
@周一见:雷丁大学的气象学家Rob Thompson说:「与其说DeepMind的研究完全颠覆了我们所知道的雨水预报,不如说它只是提供了一种不同的方法。它的表现与当前其他尖端类型的模型类似,可能稍微好一点,但并没有领先很多」
好文章,需要你的鼓励
AI技术的最新应用展示了其在日常办公场景中的强大能力。用户现在可以通过简单的截图操作,让AI智能识别和提取图像中的时间、地点、事件等关键信息,并自动创建相应的日历事件。这种功能大大简化了日程管理流程,提高了工作效率,代表了AI技术在实用性和智能化方面的重要突破。
香港理工大学研究团队提出ZeCO技术,通过创新的All-Scan通信机制解决了分布式AI系统处理超长文本时的通信瓶颈问题。在256台机器上测试时,ZeCO比现有最先进方法快60%,通信时间快4倍,实现了接近理论最优的性能,为超长文本AI应用开辟了新可能。
最新调查显示,91%的AI用户都有首选的聊天机器人工具。其中ChatGPT以28%的占比位居榜首,其次是谷歌Gemini(23%)、Meta AI和亚马逊Alexa(各18%)、苹果Siri(16%)。用户主要将这些AI工具用于撰写邮件、研究感兴趣话题和管理待办事项。报告指出,61%的美国人在过去半年内使用过AI,19%的人每天都在使用。
耶鲁大学团队首创AI论文审稿基准测试系统LIMITGEN,通过人工植入缺陷和真实审稿数据两套测试集,系统评估大语言模型识别科学论文局限性的能力。结果显示AI审稿准确率约52%,远低于人类专家的86%,但检索增强技术和多智能体协作显著提升了性能,为AI辅助学术评议提供了新思路。