人类在预测天气这件事上已持续了千百年,古时便有夜观天象,而今随着科技发展,人工智能和机器学习领域取得突破,AI也越来越多地参与到天气预报行业中。
最近,DeepMind和谷歌新研究出了一种基于机器学习的天气模拟器,可以在60秒内预测10天内的天气。DeepMind以「编码-处理-解码」的方式使用图神经网络(GNN)创建的自回归模型GraphCast,在10天的预报中,在6小时步长和0.25°经纬度分辨率下,超过了目前最精确的确定性系统——ECMWF的HRES,并且GraphCast只需要一台Cloud TPU v4设备即可预测。
我们的科技留言板“有意见”如下
@不倒翁:中国古人说,“差若毫厘,谬以千里。”在科学领域,称之为“蝴蝶效应”。高性能计算结合AI的价值是分析大量的数据,但并不是分析更准确的数据,有些领域的就不适合数据越大,分析越准确,天气预测就是之一,因为计算机对于最初的数据非常敏感,前期一个微小的变化将对后面产生不可估量的影响。所以我们洞见大自然,只能在大自然的范围内!除非AI在更高维度观察大自然,不然不可能预测准确。
@黑咕隆咚:虽然AI预测天气用时短且准确率高,但是它也不会完全取代人类,预测结果还是得依靠有经验的人员进行核验,然后再传达给公众,以确保其可靠性,而且AI擅长预测它所接受训练的数据中常见的模式,如果遇到异常极端天气,它还能否预测呢?
@周一见:雷丁大学的气象学家Rob Thompson说:「与其说DeepMind的研究完全颠覆了我们所知道的雨水预报,不如说它只是提供了一种不同的方法。它的表现与当前其他尖端类型的模型类似,可能稍微好一点,但并没有领先很多」
好文章,需要你的鼓励
科技亿万富翁拉里·埃里森资助的研究团队将向英国牛津大学投资1.18亿英镑,用于将AI技术应用于疫苗研究。牛津疫苗研究小组将领导这一项目,研究人体免疫系统对严重细菌感染和抗生素耐药性的反应。该项目由曾主导新冠疫苗试验的安德鲁·波拉德教授领导,计划采用人体挑战模型,让志愿者在受控条件下接触细菌,然后运用现代免疫学和AI工具来精确识别预测保护效果的免疫反应,以开发针对致命疾病的创新疫苗。
字节跳动团队开发了首个AI研究助手评估系统ReportBench,通过对比AI生成报告与专家综述论文的引用质量,并验证陈述准确性来评估AI助手表现。研究发现OpenAI Deep Research引用准确率38.5%,Gemini为14.5%,两者都存在陈述和引用幻觉问题。该系统为AI研究助手建立了标准化质量检测工具,推动行业发展。
据报道,ChatGPT开发商OpenAI计划在印度建设一座耗电量超过1吉瓦的数据中心,目前正寻找当地合作伙伴。该设施预计可容纳至少5.9万片英伟达B200芯片。这可能是OpenAI全球数据中心计划的一部分,旨在为国际用户提供更低延迟服务。OpenAI CEO奥特曼将于下月访问印度,公司还计划年底前在新德里开设办事处。
台湾大学研究团队开发了MovieCORE数据集,这是首个专门训练AI深度理解电影内容的创新工具。该数据集通过多AI智能体协作生成复杂问题,采用认知分类法测量思维深度,99.2%的问答需要高层次思维。研究还开发了ACE增强技术,可将AI性能提升25%。实验显示现有AI在深度视频理解方面仍存在显著不足,为未来AI发展指明了方向。