过去的几年里,PyTorch从1.0到1.13进行了创新和迭代,12月2日,PyTorch 2.0正式发布。与前辈们相比,PyTorch 2.0提供了相同的eager mode和用户体验,同时通过torch.compile增加了一个编译模式,可以在不更改模型代码的情况下对模型进行加速,从而提供更佳的性能和对Dynamic Shapes及分布式运行的支持。经测试,使用2.0可以将训练速度提高38-76%。
由于torch.compile是一个可选特性,因此PyTorch 2.0是完全向后兼容的。此外,2.0系列还会将PyTorch的部分代码从C++移回Python。PyTorch团队表示,PyTorch 2.0是他们向2.x系列迈出的第一步,稳定版预计在2023年3月初发布。
我们的科技留言板“有意见”如下
@码头诗人:AI模型编译速度的提升意味着在实际应用项目又可以节省不少计算资源,能够进一步推动AI降本,推动人工智能在产业中加速普。实际上,国内科技公司也都在开源领域、在机器学习方面投入大量资源搞研发,这也是当下一个颇具潜力的技术高地。
@东北路飞刘海柱:PyTorch2.0把2000个算子用250个基础算子实现,如果想要提升性能,可以针对Aten的750+算子进行融合优化,更加生态环保,也能让厂商对接更加方便。
@算子:PyTorch 2.0最大的更新就是这个torch.compile。好奇编译加速能否良好的支持fsdp的加入?毕竟torch的fsdp不算是一个成熟的算子,而且支持这个事的工作量应该是巨大的。
好文章,需要你的鼓励
科技亿万富翁拉里·埃里森资助的研究团队将向英国牛津大学投资1.18亿英镑,用于将AI技术应用于疫苗研究。牛津疫苗研究小组将领导这一项目,研究人体免疫系统对严重细菌感染和抗生素耐药性的反应。该项目由曾主导新冠疫苗试验的安德鲁·波拉德教授领导,计划采用人体挑战模型,让志愿者在受控条件下接触细菌,然后运用现代免疫学和AI工具来精确识别预测保护效果的免疫反应,以开发针对致命疾病的创新疫苗。
字节跳动团队开发了首个AI研究助手评估系统ReportBench,通过对比AI生成报告与专家综述论文的引用质量,并验证陈述准确性来评估AI助手表现。研究发现OpenAI Deep Research引用准确率38.5%,Gemini为14.5%,两者都存在陈述和引用幻觉问题。该系统为AI研究助手建立了标准化质量检测工具,推动行业发展。
据报道,ChatGPT开发商OpenAI计划在印度建设一座耗电量超过1吉瓦的数据中心,目前正寻找当地合作伙伴。该设施预计可容纳至少5.9万片英伟达B200芯片。这可能是OpenAI全球数据中心计划的一部分,旨在为国际用户提供更低延迟服务。OpenAI CEO奥特曼将于下月访问印度,公司还计划年底前在新德里开设办事处。
台湾大学研究团队开发了MovieCORE数据集,这是首个专门训练AI深度理解电影内容的创新工具。该数据集通过多AI智能体协作生成复杂问题,采用认知分类法测量思维深度,99.2%的问答需要高层次思维。研究还开发了ACE增强技术,可将AI性能提升25%。实验显示现有AI在深度视频理解方面仍存在显著不足,为未来AI发展指明了方向。