一直以来人们都有一个梦想,即借助人工智能AI技术来拓展现有人类智慧、知识和创造力的边界,但人脑复杂结构带来的学习能力远超人类构建AI的能力,于是AI只能通过各种特定深度学习模型来单点突破某些特定领域。而AIGC,即基于AI能力的内容创作(包括文字、图片和视频等等)也是其中一个重要类别。
然而AI的“深度学习”训练并不是拥有自我意识的自主学习,是通过收集大量样本让AI从海量数据中总结规律,再根据人类的指令,基于规律进行内容再生产的过程,它同时受核心算法、硬件条件、数据库样本等多方面的限制。但是在今年年初,AIGC的缺点被最终被 diffusion 扩散化模型克服,带来了魔术般的用户体验:打开网址,输入你想要画面的关键字,等待几分钟,模型就会生成完成度非常高的图片作品。普通人使用最尖端AI技术的门槛因此被降到最低,上线以来,仅通过官方平台 DreamStudio 制作的生成图片就超过1.7万亿张。
我们的科技留言板“有意见”如下:
@随机即灵感:AI作画的在技术的帮助下让人类不断提升对不确定性的认知。8年前,通过“生成式对抗网络”(GAN, Generative Adversarial Networks)的AI画作只不过是通过自鉴别进行不断地逼近模仿。今天的稳定扩散模型(Stable Diffusion Model)通过引入不可观测的随机变量,让画作更”自然“,也体现出了不确定性的魅力所在。
@bicmao:并不认同“AI取代人类”这句话。Diffusion大火之前,AI绘图其实比较一般,大部分AI绘图基本只能生成特定类型的图片,Diffusion确实使得AI绘图有了质量上的飞跃,而且可以很好地根据语言指导生成,但是可控性依然不足,功能指向性也较单一。目前,AI绘图尚不成熟。比如“五彩斑斓的黑”这种需求,对于怼也怼不了,做也做不出的AI来说,就只能化身“Siri”了。
@素颜也倾城:“关键词、数据库、模糊查找、潜在扩散模型”=“素材库融合怪”,Stability AI是否可以“唤醒人类的潜能”我不清楚,但是目前AI还没有独立的思考及创造能力,摆在我们眼前的还是如何防范AI创作模型的“剽窃”。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。