一直以来人们都有一个梦想,即借助人工智能AI技术来拓展现有人类智慧、知识和创造力的边界,但人脑复杂结构带来的学习能力远超人类构建AI的能力,于是AI只能通过各种特定深度学习模型来单点突破某些特定领域。而AIGC,即基于AI能力的内容创作(包括文字、图片和视频等等)也是其中一个重要类别。
然而AI的“深度学习”训练并不是拥有自我意识的自主学习,是通过收集大量样本让AI从海量数据中总结规律,再根据人类的指令,基于规律进行内容再生产的过程,它同时受核心算法、硬件条件、数据库样本等多方面的限制。但是在今年年初,AIGC的缺点被最终被 diffusion 扩散化模型克服,带来了魔术般的用户体验:打开网址,输入你想要画面的关键字,等待几分钟,模型就会生成完成度非常高的图片作品。普通人使用最尖端AI技术的门槛因此被降到最低,上线以来,仅通过官方平台 DreamStudio 制作的生成图片就超过1.7万亿张。
我们的科技留言板“有意见”如下:
@随机即灵感:AI作画的在技术的帮助下让人类不断提升对不确定性的认知。8年前,通过“生成式对抗网络”(GAN, Generative Adversarial Networks)的AI画作只不过是通过自鉴别进行不断地逼近模仿。今天的稳定扩散模型(Stable Diffusion Model)通过引入不可观测的随机变量,让画作更”自然“,也体现出了不确定性的魅力所在。
@bicmao:并不认同“AI取代人类”这句话。Diffusion大火之前,AI绘图其实比较一般,大部分AI绘图基本只能生成特定类型的图片,Diffusion确实使得AI绘图有了质量上的飞跃,而且可以很好地根据语言指导生成,但是可控性依然不足,功能指向性也较单一。目前,AI绘图尚不成熟。比如“五彩斑斓的黑”这种需求,对于怼也怼不了,做也做不出的AI来说,就只能化身“Siri”了。
@素颜也倾城:“关键词、数据库、模糊查找、潜在扩散模型”=“素材库融合怪”,Stability AI是否可以“唤醒人类的潜能”我不清楚,但是目前AI还没有独立的思考及创造能力,摆在我们眼前的还是如何防范AI创作模型的“剽窃”。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。