单身久了,看聊天机器人也眉清目秀起来。
近日,Alphabet旗下AI公司DeepMind推出了人工智能聊天机器人Sparrow。DeepMind使用了大型语言模型Chinchilla训练开发,将强化学习与用户反馈结合起来,让一组用户向Sparrow提问,然后针对Sparrow生成的多个答案,选择他们认为最准确的。研究人员利用用户对Sparrow回答的反馈进行改进,极大提高了Sparrow的准确性。
为了防止Sparrow说出带有偏见的答案,研究人员为它制定了23条规则。在让用户诱导Sparrow打破规则的测试中,成功的频率只有8%,明显低于其他方法训练的AI模型。
我们的科技留言板“有意见”如下
@媒体搬运工:基于大模型的NLP看来真是行业热点,刚刚举行的GTC上,NVIDIA也推出了NeMo大型语言模型服务。时至今日,大模型已经成为整个AI产学界追逐的技术宠儿,各式各样参数不一、任务导向不同的大模型层出不穷。大模型具备效果好、泛化能力强等特点,进一步增强了AI的通用性,成为AI技术和应用的新基座。
@锐角:近年来各种LLM(大型语言模型)已经在问答对话上颇有成效。对话是一种灵活的交流方式,但基于LLM的聊天机器人还是会出现不准确、歧视性、涉及不安全行为的对话,因此为了让聊天机器人更安全,必须借由人类的回应来学习,采用人类参与的强化学习方式。无疑,Sparrow就是最新的产物。
@有想法的向日葵:不同的语言文化也增加了AI聊天机器人的难度。对于应答内容,既要满足聊天的能力,不是固定问题总是只有一个枯燥的答案,又要保证其建议的安全性。虽然8%的概率打破规则已经很不容易,但还需要继续完善。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。