英伟达2022秋季GTC上,黄仁勋发布人类有史以来最强自动驾驶芯片DRIVE Thor。和雷神Thor同名的智能驾驶芯片可以提供出高达2000TOPS的强大算力。
2000TOPS的算力意味着什么?从业内普遍认知行和已经展现出的规律来看,一般L2级辅助驾驶,需求的算力在几十TOPS左右。智能驾驶每提升一个级别,需求算力也呈指数上涨。例如,目前行业普遍站在L2迈向L3的门槛,需求的算力在几百TOPS左右。而为未来几年算法迭代发展留足升级空间的产品,一般都把算力堆到1000TOPS以上。
也就是说,自动驾驶研发的节奏,是按照2025年L3迈向L4,车端算力刚好在1000T左右的预想规划。最重要的,是客观加速自动驾驶能力的迭代周期。毕竟,这是史上第一次出现“算力等算法”的情况。其次,DRIVE Thor上车,会更加彻底的改变汽车底层架构,在智能化的核心价值上走得更远更极致。当然也会加速传统汽车淘汰出局。
我们的科技留言板“有意见”如下
隔壁二大爷:“数学奇才”黄教主,使用“雷神”芯片,搅动了整个汽车自动驾驶行业,“一芯六用”降低了工业上综合布线的难度同时也降低了生产成本,但是对我这种“平民用户”来说,如何得到驾驶安全、信息安全才是我最关注的。
@脱虚换道:GPU算力正从虚拟经济转向实体经济。全球虚拟货币与主权货币的矛盾凸显后,挖矿带动的GPU算力需求戛然而止, NVIDIA股价暴跌打击的不仅是投资者的信心,还严重打击了黄仁勋的GPU帝国的生存力。黄仁勋亟需找到一个新的业务增长点,放眼全球,“元宇宙”初试锋芒,但尚未形成气候,造车新势力引领的智能驾驶带动了汽车代际更替业务却不断增长,毕竟选对赛道才能平安过冬。
@媒体搬运工:稳固已有优势市场的同时,NVIDIA也在拓展新领域。从新一代Ada Lovelace RTX GPU到H100 GPU全面投产,NVIDIA GPU正在“脱胎换骨”。在边缘自主机器、自动驾驶等领域,NVIDIA也带来了激动人心的产品,想象的空间是巨大的。
好文章,需要你的鼓励
Anthropic发布了面向成本敏感用户的Claude Haiku 4.5大语言模型,定价为每百万输入令牌1美元,输出令牌5美元,比旗舰版Sonnet 4.5便宜三倍。该模型采用混合推理架构,可根据需求调整计算资源,支持多模态输入最多20万令牌。在八项基准测试中,性能仅比Sonnet 4.5低不到10%,但在编程和数学任务上超越了前代Sonnet 4。模型响应速度比Sonnet 4快两倍以上,适用于客服聊天机器人等低延迟应用场景。
上海AI实验室联合多家顶尖机构开发出全球首个科学推理大模型SciReasoner,该模型在2060亿科学数据上训练,支持103个科学任务,能够像科学家一样进行逻辑推理并展示思考过程。它实现了化学、生物学、材料科学等多领域知识整合,在分子设计、性质预测、文献分析等方面表现出色,为科学研究提供了强大的AI助手工具。
英国初创公司Nscale将为微软建设四个AI数据中心,总计部署约20万个GPU,合同价值高达240亿美元。首个数据中心将于明年在葡萄牙开建,配备1.26万个GPU。德州数据中心规模最大,将部署10.4万个GPU,容量从240兆瓦扩展至1.2吉瓦。所有设施将采用英伟达最新Blackwell Ultra显卡。
南洋理工大学研究团队开发出SHINE方法,这是一种无需额外训练就能实现高质量图像合成的新技术。该方法通过巧妙引导现有AI模型的潜能,能够在复杂光影条件下完美合成图像,包括准确的阴影生成和水面倒影效果。研究团队还创建了ComplexCompo基准测试集,验证了SHINE在各种挑战性场景中的卓越性能,为图像编辑技术的发展开辟了新方向。