近日,DeepMind推出了单一“通才”代理(Generalist Agent)Gato。该AI系统能够执行600多种不同的任务,可使用相同的权重来完成注释图像、聊天、玩小游戏、关节力矩控制、用机械臂堆叠积木等众多任务。据了解,这是第一个在如此多不同任务上都表现较好的AI模型。DeepMind称Gato为一种“多模式、多任务、多实施例的通才系统”,构建方法与GPT-3等大规模语言模型类似,但参数数量要小几个数量级,相比1750亿参数的GPT-3,Gato只有约12亿个参数。
我们的科技留言板及Twitter用户对此事“有意见”如下
@崔妮蒂:通用AI是DeepMind“有生之年”的目标。不过Gato的多任务,还是数量多,不是类别多,而人能学的类别是无限的,能左手写公式,右手刷盘子。但DeepMind毕竟是商业公司,却怀揣人类命运级的理想,值得赞。(题外话:谷歌早年搞计算机视觉是认猫,而Gato是西班牙语的猫,难道AI的尽头是铲屎官?)
@汤姆猫:很容易将Gato与通用人工智能AGI混淆。就像一个预存了600种不同游戏的游戏机,与一个拥有600种不同玩法的游戏,同样能玩600次,但本质是有区别的。
@Manish Patel:一个根本性问题,仍然是大量的数据构成了Gato的“源头”,它不学习新知识。
@媒体搬运工/@码客人生:AI模型走通用路线是死路一条,什么都可以的“通才”往往什么都做不太好,Gato其实也不例外,领域驱动的AI模型(domin-driven AI Modle)才是未来。
@不倒翁:可解释、可通用的AI技术是趋势,目的是可信任、可溯源,作用是约束,通过算法透明来约束机器人。想一想当机器人比人聪明,而且不受约束是多么的可怕。
@素颜也倾城:2019年,DeepMind推出的游戏AIphaStar,当时结构非常复杂,到了2022年,一个可以完成数百个任务的AI,它的架构仅仅是Transformer这个多面手。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。